We present here the synthesis of several new isoalloxazine cyclophanes containing electroactive anthraquinones linked by aliphatic chains of different lengths. Such structural changes provide different interchromophoric orientations leading to the tuning of the rate of the photoinduced electron transfer process from the anthraquinone unit towards the isoalloxazine singlet excited state. Molecular modelling studies were undertaken in order to determine the minimal energy of the proposed structures using Monte Carlo calculations (Amber, Macromodel v.8.1). The compounds have been fully characterised by NMR spectroscopy and the solid state structures of some of the macrocycles have been elucidated. The photophysical studies have been carried out in order to investigate the influence of ?-? stacking on the optical properties of the macrocycles. © 2013 The Royal Society of Chemistry and Owner Societies.
Tuning photoinduced processes of covalently bound isoalloxazine and anthraquinone bichromophores
Accorsi Gianluca
2013
Abstract
We present here the synthesis of several new isoalloxazine cyclophanes containing electroactive anthraquinones linked by aliphatic chains of different lengths. Such structural changes provide different interchromophoric orientations leading to the tuning of the rate of the photoinduced electron transfer process from the anthraquinone unit towards the isoalloxazine singlet excited state. Molecular modelling studies were undertaken in order to determine the minimal energy of the proposed structures using Monte Carlo calculations (Amber, Macromodel v.8.1). The compounds have been fully characterised by NMR spectroscopy and the solid state structures of some of the macrocycles have been elucidated. The photophysical studies have been carried out in order to investigate the influence of ?-? stacking on the optical properties of the macrocycles. © 2013 The Royal Society of Chemistry and Owner Societies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.