Aim of this study was to perform a detailed clinical validation of a novel fully automatic method for vertebral morphometry. About 80 spine lateral radiographs were evaluated both automatically, by the proposed algorithm, and manually, by an experienced radiologist. The following metrics were used for algorithm performance assessment: sensitivity and specificity in vertebra detection; errors in the localisation of characteristic points of vertebral border; errors in the measurement of six diagnostic parameters; level of agreement and correlation between manual and automatic morphometric measurements; overall accuracy of automatic diagnoses with respect to manual ones. Obtained results showed a very good performance in vertebra detection (sensitivity = 89.1% and specificity = 100.0%). Average errors in the localisation of vertebral characteristic points were always smaller than 3 mm (range 0.85-2.79mm), causing relative errors in diagnostic parameter values ranging from -5.01 to +6.10%. Bland-Altman analysis documented a mean error in automatic measurements of diagnostic ratios of 0.01 ± 0.18 (bias ± 2 SDs), while Pearson's correlation coefficient resulted r = 0.71 (p < 0.001). Finally, an optimal diagnostic coincidence (92.8%) was found between automatic and manual diagnoses. Therefore, the adopted method has a potential for an effective employment in clinical routine for reliable diagnosis of vertebral fractures.

Automatic method for vertebral morphometry measurements

Roberto Franchini;Francesco Conversano;Paola Pisani;Ernesto Casciaro;Sergio Casciaro
2016

Abstract

Aim of this study was to perform a detailed clinical validation of a novel fully automatic method for vertebral morphometry. About 80 spine lateral radiographs were evaluated both automatically, by the proposed algorithm, and manually, by an experienced radiologist. The following metrics were used for algorithm performance assessment: sensitivity and specificity in vertebra detection; errors in the localisation of characteristic points of vertebral border; errors in the measurement of six diagnostic parameters; level of agreement and correlation between manual and automatic morphometric measurements; overall accuracy of automatic diagnoses with respect to manual ones. Obtained results showed a very good performance in vertebra detection (sensitivity = 89.1% and specificity = 100.0%). Average errors in the localisation of vertebral characteristic points were always smaller than 3 mm (range 0.85-2.79mm), causing relative errors in diagnostic parameter values ranging from -5.01 to +6.10%. Bland-Altman analysis documented a mean error in automatic measurements of diagnostic ratios of 0.01 ± 0.18 (bias ± 2 SDs), while Pearson's correlation coefficient resulted r = 0.71 (p < 0.001). Finally, an optimal diagnostic coincidence (92.8%) was found between automatic and manual diagnoses. Therefore, the adopted method has a potential for an effective employment in clinical routine for reliable diagnosis of vertebral fractures.
2016
Istituto di Fisiologia Clinica - IFC
vertebral morphometry; automatic method; automatic morphometry measurements;
File in questo prodotto:
File Dimensione Formato  
prod_349477-doc_117324.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 500.24 kB
Formato Adobe PDF
500.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/312795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact