The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general. (C) 2015 AIP Publishing LLC.

Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

Benedetti Stefania;Di Bona Alessandro;Valeri Sergio;Torelli Piero
2015

Abstract

The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general. (C) 2015 AIP Publishing LLC.
2015
Istituto Officina dei Materiali - IOM -
Istituto Nanoscienze - NANO
Ottica
thin film
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/312866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact