We establish new interaction estimates for a system introduced by Baiti and Jenssen. These estimates are pivotal to the analysis of the wave front-tracking approximation. In a companion paper we use them to construct a counter-example which shows that Schaeffer's Regularity Theorem for scalar conservation laws does not extend to systems. The counter-example we construct shows, furthermore, that a wave-pattern containing infinitely many shocks can be robust with respect to perturbations of the initial data. The proof of the interaction estimates is based on the explicit computation of the wave fan curves and on a perturbation argument.

New interaction estimates for the Baiti-Jenssen system

L V Spinolo
2016

Abstract

We establish new interaction estimates for a system introduced by Baiti and Jenssen. These estimates are pivotal to the analysis of the wave front-tracking approximation. In a companion paper we use them to construct a counter-example which shows that Schaeffer's Regularity Theorem for scalar conservation laws does not extend to systems. The counter-example we construct shows, furthermore, that a wave-pattern containing infinitely many shocks can be robust with respect to perturbations of the initial data. The proof of the interaction estimates is based on the explicit computation of the wave fan curves and on a perturbation argument.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
conservation laws
regularity
shock formation
Schaeffer Theorem
counter-example.
File in questo prodotto:
File Dimensione Formato  
prod_346794-doc_121285.pdf

accesso aperto

Descrizione: New interaction estimates for the Baiti-Jenssen system
Tipologia: Versione Editoriale (PDF)
Dimensione 447.02 kB
Formato Adobe PDF
447.02 kB Adobe PDF Visualizza/Apri
prod_346794-doc_152421.pdf

accesso aperto

Descrizione: New interaction estimates for the Baiti-Jenssen system
Tipologia: Versione Editoriale (PDF)
Dimensione 425.71 kB
Formato Adobe PDF
425.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/313214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact