We investigate the variational structure of a phenomenological model for the coupled thermomechanical behavior of shape-memory polycrystalline materials. The nonisothermal evolution of the medium is reformulated as a generalized gradient flow of the entropy with respect to an entropy-production potential. Based on this reformulation, a semi-implicit time-discretization of the fully coupled thermomechanical problem is presented and proved to be unconditionally stable and convergent. The flexibility and robustness of the numerical method is assessed via both uniaxial and multiaxial computational tests.

Gradient structures for the thermomechanics of shape-memory materials

F Auricchio;A Reali;U Stefanelli
2016

Abstract

We investigate the variational structure of a phenomenological model for the coupled thermomechanical behavior of shape-memory polycrystalline materials. The nonisothermal evolution of the medium is reformulated as a generalized gradient flow of the entropy with respect to an entropy-production potential. Based on this reformulation, a semi-implicit time-discretization of the fully coupled thermomechanical problem is presented and proved to be unconditionally stable and convergent. The flexibility and robustness of the numerical method is assessed via both uniaxial and multiaxial computational tests.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Shape-memory materials
GENERIC formalism
Generalized gradient flow
Time-discretization
Stability and convergence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/313266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact