This article is aimed at the experimental characterization and modelling validation of shape memory alloy Negator springs. A Negator spring is a spiral spring made of strip of metal wound on the flat with an inherent curvature such that, in repose, each coil wraps tightly on its inner neighbour. The main feature of a Negator springs is the nearly constant force-displacement behaviour in the unwinding of the strip, mounted on a rotating drum. Moreover, the stroke is very long, theoretically infinite as it depends only on the length of the initial strip. A Negator spring made of shape memory alloy is built and experimentally tested to demonstrate the feasibility of this actuator. The shape memory Negator spring behaviour is predicted both with an analytical model and with a finite element software. In both cases, the material is modelled as elastic in austenitic range while an exponential continuum law is used to describe the martensitic behaviour. The experimental results confirm the applicability of this kind of geometry to the shape memory alloy actuators, and the analytical model is confirmed to be a powerful design tool to dimension and predict the spring behaviour both in martensitic and austenitic ranges, as well as the finite element model developed.

Experimental characterization and modelling validation of shape memory alloy Negator springs

Tuissi A
2015

Abstract

This article is aimed at the experimental characterization and modelling validation of shape memory alloy Negator springs. A Negator spring is a spiral spring made of strip of metal wound on the flat with an inherent curvature such that, in repose, each coil wraps tightly on its inner neighbour. The main feature of a Negator springs is the nearly constant force-displacement behaviour in the unwinding of the strip, mounted on a rotating drum. Moreover, the stroke is very long, theoretically infinite as it depends only on the length of the initial strip. A Negator spring made of shape memory alloy is built and experimentally tested to demonstrate the feasibility of this actuator. The shape memory Negator spring behaviour is predicted both with an analytical model and with a finite element software. In both cases, the material is modelled as elastic in austenitic range while an exponential continuum law is used to describe the martensitic behaviour. The experimental results confirm the applicability of this kind of geometry to the shape memory alloy actuators, and the analytical model is confirmed to be a powerful design tool to dimension and predict the spring behaviour both in martensitic and austenitic ranges, as well as the finite element model developed.
2015
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Shape memory
actuators
experimental testing
Negator
File in questo prodotto:
File Dimensione Formato  
prod_346905-doc_109009.pdf

solo utenti autorizzati

Descrizione: Experimental characterization and modelling validation of shape memory alloy Negator springs
Tipologia: Versione Editoriale (PDF)
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/313322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact