We study stochastic energetic exchanges in quantum heat engines. Due to microreversibility, these obey a fluctuation relation, called the heat engine fluctuation relation, which implies the Carnot bound: no machine can have an efficiency greater than Carnot's efficiency. The stochastic thermodynamics of a quantum heat engine (including the joint statistics of heat and work and the statistics of efficiency) are illustrated by means of an optimal two-qubit heat engine, where each qubit is coupled to a thermal bath and a two-qubit gate determines energy exchanges between the two qubits.We discuss possible solid-state implementations with Cooper-pair boxes and flux qubits, quantum gate operations, and fast calorimetric on-chip measurements of single stochastic events.
Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments
Campisi M;Fazio R
2015
Abstract
We study stochastic energetic exchanges in quantum heat engines. Due to microreversibility, these obey a fluctuation relation, called the heat engine fluctuation relation, which implies the Carnot bound: no machine can have an efficiency greater than Carnot's efficiency. The stochastic thermodynamics of a quantum heat engine (including the joint statistics of heat and work and the statistics of efficiency) are illustrated by means of an optimal two-qubit heat engine, where each qubit is coupled to a thermal bath and a two-qubit gate determines energy exchanges between the two qubits.We discuss possible solid-state implementations with Cooper-pair boxes and flux qubits, quantum gate operations, and fast calorimetric on-chip measurements of single stochastic events.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.