The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ? majorizes the output generated by the passive input state ?0 with the same spectrum of ?. Then, the output generated by ? can be obtained applying a random unitary operation to the output generated by ?0. This is an extension of De Palma [IEEE Trans. Inf. Theory 62, 2895 (2016)]IETTAW0018-944810.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.

Passive states as optimal inputs for single-jump lossy quantum channels

A Mari;V Giovannetti
2016

Abstract

The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ? majorizes the output generated by the passive input state ?0 with the same spectrum of ?. Then, the output generated by ? can be obtained applying a random unitary operation to the output generated by ?0. This is an extension of De Palma [IEEE Trans. Inf. Theory 62, 2895 (2016)]IETTAW0018-944810.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.
2016
Istituto Nanoscienze - NANO
http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&colName=WOS&SID=Z2zKbyDgLvJriEI3FGf&field=TS&value=BOSONIC+GAUSSIAN+CHANNELS&uncondQuotes=true&cacheurlFromRightClick=no
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact