This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducing the notoriously high drifts and seismic accelerations of these types of structures. TMD parameters (mass, stiffness, and damping) were designed using a genetic algorithm (GA) technique by optimizing the structural response under seven recorded earthquake ground motions compatible, on average, with a predefined elastic spectrum. Time-history dynamic analyses were carried out on a simplified two-degree-of-freedom system equivalent to the multistory building, while a detailed model of the entire building using two-dimensional elastic shell elements and elastic springs for modeling connections was used as a verification of the evaluated solution. Several comparisons between the response of the structure with and without TMD subjected to medium- and high-intensity recorded earthquake ground motions are presented, and the effectiveness and limits of these devices for improving the seismic performance of X-lam buildings are critically evaluated.

Application of a Translational Tuned Mass Damper Designed by Means of Genetic Algorithms on a Multistory Cross-Laminated Timber Building

Ceccotti A
2015

Abstract

This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducing the notoriously high drifts and seismic accelerations of these types of structures. TMD parameters (mass, stiffness, and damping) were designed using a genetic algorithm (GA) technique by optimizing the structural response under seven recorded earthquake ground motions compatible, on average, with a predefined elastic spectrum. Time-history dynamic analyses were carried out on a simplified two-degree-of-freedom system equivalent to the multistory building, while a detailed model of the entire building using two-dimensional elastic shell elements and elastic springs for modeling connections was used as a verification of the evaluated solution. Several comparisons between the response of the structure with and without TMD subjected to medium- and high-intensity recorded earthquake ground motions are presented, and the effectiveness and limits of these devices for improving the seismic performance of X-lam buildings are critically evaluated.
2015
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
Genetic algorithms
Tuned mass dampers
Springs
Shear wall
Wooden structures
Dynamic analysis
Seismic performance
Timber
Cross-laminated timber
X-lam
Wood structures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 16
social impact