This paper presents an analysis of the relation between effort and gravitational stiffness, two physical measures that depend on the configuration of the robot. It is shown that whenever the gravitational stiffness is maximized, the effort is indirectly minimized. A minimum effort attractor that controls the gravitational stiffness is presented. This attractor together with an attractor to zero joint momentum guarantee balance maintenance. The novel implementation of the attractor-based Whole-body Motion Control (WBMC) System is experimentally tested: first with simple models, and finally with the full-body humanoid robot COMAN in a physical simulation.

Use of Gravitational Stiffness in an Attractor-Based Whole-Body Motion Control Approach

2015

Abstract

This paper presents an analysis of the relation between effort and gravitational stiffness, two physical measures that depend on the configuration of the robot. It is shown that whenever the gravitational stiffness is maximized, the effort is indirectly minimized. A minimum effort attractor that controls the gravitational stiffness is presented. This attractor together with an attractor to zero joint momentum guarantee balance maintenance. The novel implementation of the attractor-based Whole-body Motion Control (WBMC) System is experimentally tested: first with simple models, and finally with the full-body humanoid robot COMAN in a physical simulation.
2015
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Whole-Body Control; Gravitational Stiffness; Joint Momentum; Balancing; Humanoid Robots
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact