A computational approach for identifying efficient fuel breaks partitions for the containment of fire incidents in forests is proposed. The approach is based on the complex networks statistics, namely the centrality measures and cellular automata modeling. The efficiency of various centrality statistics, such as betweenness, closeness, Bonacich and eigenvalue centrality to select fuel breaks partitions vs. the random-based distribution is demonstrated. Two examples of increasing complexity are considered: (a) an artificial forest of randomly distributed density of vegetation, and (b) a patch from the area of Vesuvio, National Park of Campania, Italy. Both cases assume flat terrain and single type of vegetation. Simulation results over an ensemble of lattice realizations and runs show that the proposed approach appears very promising as it produces statistically significant better outcomes when compared to the random distribution approach.

Complex network statistics to the design of fire breaks for the control of fire spreading

Russo L;
2015

Abstract

A computational approach for identifying efficient fuel breaks partitions for the containment of fire incidents in forests is proposed. The approach is based on the complex networks statistics, namely the centrality measures and cellular automata modeling. The efficiency of various centrality statistics, such as betweenness, closeness, Bonacich and eigenvalue centrality to select fuel breaks partitions vs. the random-based distribution is demonstrated. Two examples of increasing complexity are considered: (a) an artificial forest of randomly distributed density of vegetation, and (b) a patch from the area of Vesuvio, National Park of Campania, Italy. Both cases assume flat terrain and single type of vegetation. Simulation results over an ensemble of lattice realizations and runs show that the proposed approach appears very promising as it produces statistically significant better outcomes when compared to the random distribution approach.
2015
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Eigenvalues and eigenfunctions; Forestry; Vegetation Artificial forest; Cellular automata modeling; Centrality measures; Computational approach; Fire spreading; Network statistics; Rando
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact