A new class of random probability measures, approximating the well-known normalized generalized gamma (NGG) process, is defined. The new process is built from the representation of the NGG process as a discrete measure, where the weights are obtained by normalization of points of a Poisson process larger than a threshold ?. Consequently, the new process has an as surely finite number of location points. This process is then considered as the mixing measure in a mixture model for density estimation; we apply it to the popular Galaxy dataset. Moreover, we perform some robustness analysis to investigate the effect of the choice of the hyperparameters.

A new finite approximation for the NGG mixture model: An application to density estimation

I Bianchini
2015

Abstract

A new class of random probability measures, approximating the well-known normalized generalized gamma (NGG) process, is defined. The new process is built from the representation of the NGG process as a discrete measure, where the weights are obtained by normalization of points of a Poisson process larger than a threshold ?. Consequently, the new process has an as surely finite number of location points. This process is then considered as the mixing measure in a mixture model for density estimation; we apply it to the popular Galaxy dataset. Moreover, we perform some robustness analysis to investigate the effect of the choice of the hyperparameters.
2015
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-319-16237-9
A-priori truncation method
Bayesian nonparametric mixture models
Normalized generalized gamma process
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact