The present work investigates the effect of organomodified nanoclay (ZW1) and butadiene-acrylonitrile copolymer terminated with different amine groups (amine-terminated butadiene-acrylonitrile, ATBN) on the properties and morphology of epoxy resin. The morphologies of the nanocomposites were analyzed by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The nanocomposites structure was confirmed by Fourier transform infrared (FTIR) spectroscopy, XRD and TEM. The properties evaluation showed that the polymeric modifier and nanoclays strongly influence the fracture toughness and flexural properties of the nanocomposites. Hybrid epoxy composites containing 1% ZW1 and ATBN rubbers showed improved fracture toughness and flexural properties in comparison with unmodified epoxy resin. FTIR spectra showed an increase in the hydroxyl peak height peak height of 3360 cm-1 due to reactive rubber incorporation. SEM micrographs of hybrid epoxy resin nanocomposites showed significant plastic yielding of the polymer matrix with stratified structures and more cavitations, explaining thus the enhancement of fracture toughness and flexural strength of the nanocomposites.

Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites

Lavorgna M
2016

Abstract

The present work investigates the effect of organomodified nanoclay (ZW1) and butadiene-acrylonitrile copolymer terminated with different amine groups (amine-terminated butadiene-acrylonitrile, ATBN) on the properties and morphology of epoxy resin. The morphologies of the nanocomposites were analyzed by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The nanocomposites structure was confirmed by Fourier transform infrared (FTIR) spectroscopy, XRD and TEM. The properties evaluation showed that the polymeric modifier and nanoclays strongly influence the fracture toughness and flexural properties of the nanocomposites. Hybrid epoxy composites containing 1% ZW1 and ATBN rubbers showed improved fracture toughness and flexural properties in comparison with unmodified epoxy resin. FTIR spectra showed an increase in the hydroxyl peak height peak height of 3360 cm-1 due to reactive rubber incorporation. SEM micrographs of hybrid epoxy resin nanocomposites showed significant plastic yielding of the polymer matrix with stratified structures and more cavitations, explaining thus the enhancement of fracture toughness and flexural strength of the nanocomposites.
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
epoxy resin
hybrid nanocomposites
mechanical properties
morphology
structure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact