Narrow-linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high-Q crystalline mid-IR microcavities. The lasers operating at room temperature in the 4.3-4.6 ?m region have a linewidth approaching 10 kHz and are promising for on-chip mid-IR and IR spectrometers. Narrow linewidth lasers are key elements in optical metrology and spectroscopy. While stabilization of visible-to-near-IR lasers benefits of a variety of ultrastable references, its complexity increases tremendously moving to longer wavelenghts. In this paper, mid-IR quantum cascade laser stabilization to high-Q crystalline microresonators is reported, a promising method for mid-infrared metrology and on-chip infrared spectrometers.

Microcavity-Stabilized Quantum Cascade Laser

Siciliani de Cumis Mario;Borri Simone;Insero Giacomo;Galli Iacopo;De Natale Paolo
2016

Abstract

Narrow-linewidth lasers are key elements in optical metrology and spectroscopy. Spectral purity of these lasers determines accuracy of the measurements and quality of collected data. Solid state and fiber lasers are stabilized to relatively large and complex external optical cavities or narrow atomic and molecular transitions to improve their spectral purity. While this stabilization technique is rather generic, its complexity increases tremendously moving to longer wavelenghts, to the infrared (IR) range. Inherent increase of losses of optical materials at longer wavelengths hinders realization of compact, room temperature, high finesse IR cavities suitable for laser stabilization. In this paper, we report on demonstration of quantum cascade lasers stabilized to high-Q crystalline mid-IR microcavities. The lasers operating at room temperature in the 4.3-4.6 ?m region have a linewidth approaching 10 kHz and are promising for on-chip mid-IR and IR spectrometers. Narrow linewidth lasers are key elements in optical metrology and spectroscopy. While stabilization of visible-to-near-IR lasers benefits of a variety of ultrastable references, its complexity increases tremendously moving to longer wavelenghts. In this paper, mid-IR quantum cascade laser stabilization to high-Q crystalline microresonators is reported, a promising method for mid-infrared metrology and on-chip infrared spectrometers.
2016
Istituto Nazionale di Ottica - INO
Crystalline Resonators
Infrared Resonators
Laser Stabilization
Quantum Cascade Lasers
Whispering Gallery Mode Resonators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/314887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
social impact