AIM: Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. MATERIALS & METHODS: We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. RESULTS: Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. CONCLUSION: We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.

Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii.

Peano C;Consolandi C;
2016

Abstract

AIM: Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. MATERIALS & METHODS: We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. RESULTS: Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. CONCLUSION: We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.
2016
Istituto di Tecnologie Biomediche - ITB
Acinetobacter baumannii; LPS; glucose; host-pathogen interactions; innate immune response; macrophage; sepsis; transcriptomics; virulence factors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/315182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact