The electronic properties of transition metal atoms adsorbed on a graphene sheet are analyzed in the framework of the quantum theory of atoms in molecules (QTAIM). Particular attention is devoted to the spin dependence of the charge rearrangement upon the adsorption of magnetic adatoms. A comparison between the band structures and the charges in the atomic basins makes it possible to shed light on the different roles that the spin components play in the bond formation. This aspect is likely to be crucial in determining the spin-dependent properties required in spintronics applications and could help in tailoring them. We found that for early (Sc, Ti, and V) and late (Fe, Co) transition metals the two spin populations behave very differently, being involved in the bonding only the majority or the minority spin component for the lighter and heavier adsorbates, respectively. We expect that the response properties, in particular those related to the states at the Fermi level, will be very different for the two spin components. As a by-product of our study it becomes apparent that the QTAIM analysis is not the most suitable tool for catching the charge transfer phenomenon in the case of weakly interacting electronic populations.
Spin-polarized charge transfer induced by transition metal adsorption on graphene
Cargnoni F;Soave R;Trioni MI
2016
Abstract
The electronic properties of transition metal atoms adsorbed on a graphene sheet are analyzed in the framework of the quantum theory of atoms in molecules (QTAIM). Particular attention is devoted to the spin dependence of the charge rearrangement upon the adsorption of magnetic adatoms. A comparison between the band structures and the charges in the atomic basins makes it possible to shed light on the different roles that the spin components play in the bond formation. This aspect is likely to be crucial in determining the spin-dependent properties required in spintronics applications and could help in tailoring them. We found that for early (Sc, Ti, and V) and late (Fe, Co) transition metals the two spin populations behave very differently, being involved in the bonding only the majority or the minority spin component for the lighter and heavier adsorbates, respectively. We expect that the response properties, in particular those related to the states at the Fermi level, will be very different for the two spin components. As a by-product of our study it becomes apparent that the QTAIM analysis is not the most suitable tool for catching the charge transfer phenomenon in the case of weakly interacting electronic populations.File | Dimensione | Formato | |
---|---|---|---|
prod_354111-doc_114641.pdf
solo utenti autorizzati
Descrizione: articolo
Tipologia:
Versione Editoriale (PDF)
Dimensione
567.68 kB
Formato
Adobe PDF
|
567.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.