Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements' distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions betwe

A study on the DC-electrical and thermal conductivities of epoxy/ZnO composites doped with carbon black

Giuseppe Ragosta
2014

Abstract

Thermo-electrical characterizations of hybrid polymer composites, made of epoxy matrix filled with various zinc oxide (ZnO) concentrations (0, 4.9, 9.9, 14.9, and 19.9 wt%), and reinforced with conductive carbon black (CB) nanoparticles (0.1 wt%), have been investigated as a function of ZnO concentration and temperature. Both the measured DC-electrical and thermal conductivities showed ZnO concentration and temperature dependencies. Increasing the temperature and filler concentrations were reflected in a negative temperature coefficient of resistivity and enhancement of the electrical conductivity as well. The observed increase in the DC conductivity and decrease in the determined activation energy were explained based on the concept of existing paths and connections between the ZnO particles and the conductive CB nanoparticles. Alteration of ZnO concentration with a fixed content of CB nanoparticles and/or temperature was found to be crucial in the thermal conductivity behavior. The addition of CB nanoparticles to the epoxy/ZnO matrix was found to enhance the electrical conduction resulting from the electronic and impurity contributions. Also, the thermal conductivity enhancement was mostly attributed to the heat transferred by phonons and electrons hopping to higher energy levels throughout the thermal processes. Scanning electron microscopy and energy-dispersive spectroscopy were used to observe the morphology and elements' distribution in the composites. The observed thermal conductivity behavior was found to correlate well with that of the DC-electrical conductivity as a function of the ZnO content. The overall enhancements in both the measured DC- and thermal conductivities of the prepared hybrid composites are mainly produced through mutual interactions betwe
2014
CHIMICA E TECNOLOGIA DEI POLIMERI
epoxy; zinc oxide; carbon black; hybrid composites; thermal; electrical; conductivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/315685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact