In this paper, we propose to compare different declustering methods on the basis of the time-correlation and the space-clustering of the residual earthquake catalog after the declustering techniques have been applied. To this aim, we applied two point process clustering measures, the Allan Factor and the Morisita Index, for the identification and quantification of temporal correlation and spatial clustering in point processes, respectively. We used our joint space-time approach to study the earthquake space-time point processes of southern California and Switzerland with surrounding area, declustered by using the method of Gardner and Knopoff (with Grunthal and Uhmhammer window) and that of Reasenberg (with different setting parameters). Our results show that the residual declustered catalog is still characterized by time-correlated structures at long timescales; however, the cutoff timescale that is the lowest timescale above which the time-correlation is visible is higher with the Reasenberg method while is smaller with the Gardner and Knopoff method with Grunthal window. The space-clustering analysis performed by means of the Morisita Index suggests that the declustering technique effectively reduces the spatial clustering of the seismicity of Switzerland, but does not change the spatial properties of the residual seismic catalogue of the southern California.
Comparing seismicity declustering techniques by means of the joint use of Allan Factor and Morisita index
Telesca;
2016
Abstract
In this paper, we propose to compare different declustering methods on the basis of the time-correlation and the space-clustering of the residual earthquake catalog after the declustering techniques have been applied. To this aim, we applied two point process clustering measures, the Allan Factor and the Morisita Index, for the identification and quantification of temporal correlation and spatial clustering in point processes, respectively. We used our joint space-time approach to study the earthquake space-time point processes of southern California and Switzerland with surrounding area, declustered by using the method of Gardner and Knopoff (with Grunthal and Uhmhammer window) and that of Reasenberg (with different setting parameters). Our results show that the residual declustered catalog is still characterized by time-correlated structures at long timescales; however, the cutoff timescale that is the lowest timescale above which the time-correlation is visible is higher with the Reasenberg method while is smaller with the Gardner and Knopoff method with Grunthal window. The space-clustering analysis performed by means of the Morisita Index suggests that the declustering technique effectively reduces the spatial clustering of the seismicity of Switzerland, but does not change the spatial properties of the residual seismic catalogue of the southern California.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.