Data mining is gaining societal momentum due to the ever increasing availability of large amounts of human data, easily collected by a variety of sensing technologies. We are assisting to unprecedented opportunities of understanding human and society behavior that unfortunately is darkened by several risks for human rights: one of this is the unfair discrimination based on the extracted patterns and profiles. Consider the case when a set of patterns extracted from the personal data of a population of individual persons is released for subsequent use in a decision making process, such as, e.g., granting or denying credit. Decision rules based on such patterns may lead to unfair discrimination, depending on what is represented in the training cases. In this context, we address the discrimination risks resulting from publishing frequent patterns. We present a set of pattern sanitization methods, one for each discrimination measure used in the legal literature, for fair (discrimination-protected) publishing of frequent pattern mining results. Our proposed pattern sanitization methods yield discrimination-protected patterns, while introducing reasonable (controlled) pattern distortion. Finally, the effectiveness of our proposals is assessed by extensive experiments. Copyright 2014 ACM.

Fair pattern discovery

Monreale A;Pedreschi D;Giannotti F
2014

Abstract

Data mining is gaining societal momentum due to the ever increasing availability of large amounts of human data, easily collected by a variety of sensing technologies. We are assisting to unprecedented opportunities of understanding human and society behavior that unfortunately is darkened by several risks for human rights: one of this is the unfair discrimination based on the extracted patterns and profiles. Consider the case when a set of patterns extracted from the personal data of a population of individual persons is released for subsequent use in a decision making process, such as, e.g., granting or denying credit. Decision rules based on such patterns may lead to unfair discrimination, depending on what is represented in the training cases. In this context, we address the discrimination risks resulting from publishing frequent patterns. We present a set of pattern sanitization methods, one for each discrimination measure used in the legal literature, for fair (discrimination-protected) publishing of frequent pattern mining results. Our proposed pattern sanitization methods yield discrimination-protected patterns, while introducing reasonable (controlled) pattern distortion. Finally, the effectiveness of our proposals is assessed by extensive experiments. Copyright 2014 ACM.
2014
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-2469-4
Privacy
Discrimination
Patterns.
File in questo prodotto:
File Dimensione Formato  
prod_347564-doc_109441.pdf

solo utenti autorizzati

Descrizione: Fair pattern discovery
Tipologia: Versione Editoriale (PDF)
Dimensione 733.21 kB
Formato Adobe PDF
733.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/316040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact