A general method to obtain the efficient entrapment of mixtures of glycoenzymes in calcium alginate hydrogel is proposed in this paper. As a proof of principle, three glycoenzymes acting in series (trehalase, glucose oxidase, and horseradish peroxidase) have been coimmobilized in calcium alginate beads. The release of the enzymes from the hydrogel mesh (leakage) is avoided by exploiting the enzyme's aggregation induced by the concanavalin A. The aggregation process has been monitored by dynamic light scattering technique, while both enzyme encapsulation efficiency and leakage have been quantified spectrophotometrically. Obtained data show an encapsulation efficiency above 95% and a negligible leakage from the beads when enzyme aggregates are larger than 300 nm. Operational stability of "as prepared" beads has been largely improved by a coating of alternated shells of polycation poly(diallyldimethylammonium chloride) and of alginate. As a test for the effectiveness of the overall procedure, analytical bioassays exploiting the enzyme-containing beads have been developed for the optical determination of glucose and trehalose, and limit of detection values of 0.2 and of 40 ?M, respectively, have been obtained.

General Approach to the Immobilization of Glycoenzyme Chains Inside Calcium Alginate Beads for Bioassay

Mallardi A;
2015

Abstract

A general method to obtain the efficient entrapment of mixtures of glycoenzymes in calcium alginate hydrogel is proposed in this paper. As a proof of principle, three glycoenzymes acting in series (trehalase, glucose oxidase, and horseradish peroxidase) have been coimmobilized in calcium alginate beads. The release of the enzymes from the hydrogel mesh (leakage) is avoided by exploiting the enzyme's aggregation induced by the concanavalin A. The aggregation process has been monitored by dynamic light scattering technique, while both enzyme encapsulation efficiency and leakage have been quantified spectrophotometrically. Obtained data show an encapsulation efficiency above 95% and a negligible leakage from the beads when enzyme aggregates are larger than 300 nm. Operational stability of "as prepared" beads has been largely improved by a coating of alternated shells of polycation poly(diallyldimethylammonium chloride) and of alginate. As a test for the effectiveness of the overall procedure, analytical bioassays exploiting the enzyme-containing beads have been developed for the optical determination of glucose and trehalose, and limit of detection values of 0.2 and of 40 ?M, respectively, have been obtained.
2015
Istituto per i Processi Chimico-Fisici - IPCF
Glycoenzyme; alginate; bioassay
File in questo prodotto:
File Dimensione Formato  
prod_347592-doc_168067.pdf

solo utenti autorizzati

Descrizione: General Approach to the Immobilization of Glycoenzyme Chains Inside Calcium Alginate Beads for Bioassay
Tipologia: Versione Editoriale (PDF)
Dimensione 754.08 kB
Formato Adobe PDF
754.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/316067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact