We prove some properties of the first eigenvalue of the problem \begin{array}{ll} -{\cal A}_p u \colon = - \hbox{\rm div\ } \Big( (A\D u, \D u)^{(p-2)/2}A\D u\Big)= \lambda V(x) |u|^{p-2} u & \hbox{\rm in\ } \O \\ \quad u=0 & \hbox{\rm on\ } \partial \O . \end{array} In particular, the first eigenvalue is shown to be isolated. Moreover, existence and non existence results of solutions in W^{1, p}_0(\Omega) for nonlinear weighted equations with exponential growth are obtained.

Some properties for the first eigenvalue of nonlinear weighted problems and applications

Alberico A
2004

Abstract

We prove some properties of the first eigenvalue of the problem \begin{array}{ll} -{\cal A}_p u \colon = - \hbox{\rm div\ } \Big( (A\D u, \D u)^{(p-2)/2}A\D u\Big)= \lambda V(x) |u|^{p-2} u & \hbox{\rm in\ } \O \\ \quad u=0 & \hbox{\rm on\ } \partial \O . \end{array} In particular, the first eigenvalue is shown to be isolated. Moreover, existence and non existence results of solutions in W^{1, p}_0(\Omega) for nonlinear weighted equations with exponential growth are obtained.
2004
Istituto Applicazioni del Calcolo ''Mauro Picone''
Nonlinear eigenvalue problems
nonlinear spectral theory
Nonlinear elliptic equations
Variational methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/31616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact