Chemical vapor deposition (CVD) is typically used for large-scale graphene synthesis for practical applications. However, the inferior electronic properties of CVD graphene are one of the key problems to be solved. Therefore, we present a detailed study on the electronic properties of high-quality single-crystal monolayer graphene. The graphene is grown via CVD on copper, by using a cold-wall reactor, and then transferred to Si/SiO2. Our low-temperature magneto-transport data demonstrate that the characteristics of the single-crystal CVD graphene samples are superior to those of polycrystalline graphene and have a quality which is comparable to that of exfoliated graphene on Si/SiO2. The Dirac point in our best samples occurs at back-gate voltages lower than 10 V, and a maximum mobility of 11,000 cm(2)/(V center dot s) is attained. More than 12 flat and discernible half-integer quantum Hall plateaus occur under a high magnetic field on both the electron and hole sides of the Dirac point. At a low magnetic field, the magnetoresistance exhibits a weak localization peak. Using the theory of McCann et al., we obtain inelastic scattering lengths of > 1 A mu m, even at the charge neutrality point of the samples.

Low-temperature quantum transport in CVD-grown single crystal graphene

S Guiducci;S Roddaro;F Beltram;S Heun
2016

Abstract

Chemical vapor deposition (CVD) is typically used for large-scale graphene synthesis for practical applications. However, the inferior electronic properties of CVD graphene are one of the key problems to be solved. Therefore, we present a detailed study on the electronic properties of high-quality single-crystal monolayer graphene. The graphene is grown via CVD on copper, by using a cold-wall reactor, and then transferred to Si/SiO2. Our low-temperature magneto-transport data demonstrate that the characteristics of the single-crystal CVD graphene samples are superior to those of polycrystalline graphene and have a quality which is comparable to that of exfoliated graphene on Si/SiO2. The Dirac point in our best samples occurs at back-gate voltages lower than 10 V, and a maximum mobility of 11,000 cm(2)/(V center dot s) is attained. More than 12 flat and discernible half-integer quantum Hall plateaus occur under a high magnetic field on both the electron and hole sides of the Dirac point. At a low magnetic field, the magnetoresistance exhibits a weak localization peak. Using the theory of McCann et al., we obtain inelastic scattering lengths of > 1 A mu m, even at the charge neutrality point of the samples.
2016
Istituto Nanoscienze - NANO
high-quality chemical vapor deposition (CVD)-graphene; low-temperature magnetotransport; quantum Hall effect; weak localization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/316635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact