Classical approaches for network traffic classification are based on port analysis and packet inspection. Recent studies indicate that network protocols can be recognised more accurately using the flow statistics of the TCP connection. We propose a classifier selection ensemble for a fast and accurate verification of network protocols. Using the requested port number, the classifier selector directs the decision to an ensemble member responsible for this port. The chosen ensemble member ramifies the decision further using the "sign pattern" of the first four packets. Finally, a decision tree classifier labels the flow as 'accepted' or 'rejected' using the sizes of the first four packets. The ensemble has modular architecture which allows further modules to be individually trained and added. The classifiers were cross-tested using designated training and testing data of network traffic traces from three institutions. The results show that accuracy need not be sacrificed for speed of classification, and that the protocol classification is robust from one network to another.

Network Protocol Verification by a Classifier Selection Ensemble

Gargiulo Francesco;
2009

Abstract

Classical approaches for network traffic classification are based on port analysis and packet inspection. Recent studies indicate that network protocols can be recognised more accurately using the flow statistics of the TCP connection. We propose a classifier selection ensemble for a fast and accurate verification of network protocols. Using the requested port number, the classifier selector directs the decision to an ensemble member responsible for this port. The chosen ensemble member ramifies the decision further using the "sign pattern" of the first four packets. Finally, a decision tree classifier labels the flow as 'accepted' or 'rejected' using the sizes of the first four packets. The ensemble has modular architecture which allows further modules to be individually trained and added. The classifiers were cross-tested using designated training and testing data of network traffic traces from three institutions. The results show that accuracy need not be sacrificed for speed of classification, and that the protocol classification is robust from one network to another.
2009
978-3-642-02325-5
Network Protocol Verification
Classifier Ensemble
computer security
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/317156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
social impact