Deep space exploration missions are aimed at acquiring information about the solar system and a significant communication capacity has to be planned to transfer data for such very large distances. Terrestrial atmospheric impairments on the space-to-Earth propagating signal are the major responsible for the signal degradation thus reducing the channel temporal availability. In this work weather forecast models, coupled with microphysically-oriented radio-propagation models, are described in order to evaluate atmospheric effects at Ka-band. Estimation data return techniques are summarized and numerical results in a simulated operational scenario are illustrated in terms of received data volume using the BepiColombo mission as a baseline example.
Weather effects mitigation at Ka band by using radiometeorological model forecast in deep space downlinks
Montopoli M;
2015
Abstract
Deep space exploration missions are aimed at acquiring information about the solar system and a significant communication capacity has to be planned to transfer data for such very large distances. Terrestrial atmospheric impairments on the space-to-Earth propagating signal are the major responsible for the signal degradation thus reducing the channel temporal availability. In this work weather forecast models, coupled with microphysically-oriented radio-propagation models, are described in order to evaluate atmospheric effects at Ka-band. Estimation data return techniques are summarized and numerical results in a simulated operational scenario are illustrated in terms of received data volume using the BepiColombo mission as a baseline example.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.