The description of shock waves beyond the shock point is a challenge in nonlinear physics and optics. Finding solutions to the global dynamics of dispersive shock waves is not always possible due to the lack of integrability. Here we propose a new method based on the eigenstates (Gamow vectors) of a reversed harmonic oscillator in a rigged Hilbert space. These vectors allow analytical formulation for the development of undular bores of shock waves in a nonlinear nonlocal medium. Experiments by a photothermal induced nonlinearity confirm theoretical predictions: the undulation period as a function of power and the characteristic quantized decays of Gamow vectors. Our results demonstrate that Gamow vectors are a novel and effective paradigm for describing extreme nonlinear phenomena.

Gamow vectors explain the shock profile

Maria Chiara Braidotti;Silvia Gentilini;Claudio Conti
2016

Abstract

The description of shock waves beyond the shock point is a challenge in nonlinear physics and optics. Finding solutions to the global dynamics of dispersive shock waves is not always possible due to the lack of integrability. Here we propose a new method based on the eigenstates (Gamow vectors) of a reversed harmonic oscillator in a rigged Hilbert space. These vectors allow analytical formulation for the development of undular bores of shock waves in a nonlinear nonlocal medium. Experiments by a photothermal induced nonlinearity confirm theoretical predictions: the undulation period as a function of power and the characteristic quantized decays of Gamow vectors. Our results demonstrate that Gamow vectors are a novel and effective paradigm for describing extreme nonlinear phenomena.
2016
Istituto dei Sistemi Complessi - ISC
Nonlinear optics
Kerr effect
Physical optics
Thermal lensing
File in questo prodotto:
File Dimensione Formato  
prod_361709-doc_119012.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/317759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact