This study investigated the feasibility of delivering a crop type map early during the growing season. Landsat 8 OLI multi-temporal data acquired in 2013 season were used to classify seven crop types in Northern Italy. The accuracy achieved with four supervised algorithms, fed with multi-temporal spectral indices (EVI, NDFI, RGRI), was assessed as a function of the crop map delivery time during the season. Overall accuracy (Kappa) exceeds 85% (0.83) starting from mid-July, five months before the end of the season, when maximum accuracy is reached (OA=92%, Kappa=0.91). Among crop types, rice is the most accurately classified, followed by forages, maize and arboriculture, while soybean or double crops can be confused with other classes.
Assessing in-season crop classification performance using satellite data: A test case in Northern Italy
Azar R;Villa P;Stroppiana D;Crema A;Boschetti M;Brivio PA
2016
Abstract
This study investigated the feasibility of delivering a crop type map early during the growing season. Landsat 8 OLI multi-temporal data acquired in 2013 season were used to classify seven crop types in Northern Italy. The accuracy achieved with four supervised algorithms, fed with multi-temporal spectral indices (EVI, NDFI, RGRI), was assessed as a function of the crop map delivery time during the season. Overall accuracy (Kappa) exceeds 85% (0.83) starting from mid-July, five months before the end of the season, when maximum accuracy is reached (OA=92%, Kappa=0.91). Among crop types, rice is the most accurately classified, followed by forages, maize and arboriculture, while soybean or double crops can be confused with other classes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.