Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes.
Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in Endothelial Response to Biomechanical and Biochemical Stresses in Arteries: TRAIL effects on the cardiovascular system
MA Centurione;
2015
Abstract
Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.