Despite being one of the most common approach in unsupervised data analysis, a very small literature exists on the formalization of clustering algorithms. This paper proposes a semiring-based methodology, named Feature-Cluster Algebra, which is applied to abstract the representation of a labeled tree structure representing a hierarchical categorical clustering algorithm, named CCTree. The elements of the feature-cluster algebra are called terms. We prove that a specific kind of a term, under some conditions, fully abstracts a labeled tree structure. The abstraction methodology maps the original problem to a new representation by removing unwanted details, which makes it simpler to handle. Moreover, we present a set of relations and functions on the algebraic structure to shape the requirements of a term to represent a CCTree structure. The proposed formal approach can be generalized to other categorical clustering (classification) algorithms in which features play key roles in specifying the clusters (classes).

On the abstraction of a categorical clustering algorithm

Sheikhalishahi M;
2016

Abstract

Despite being one of the most common approach in unsupervised data analysis, a very small literature exists on the formalization of clustering algorithms. This paper proposes a semiring-based methodology, named Feature-Cluster Algebra, which is applied to abstract the representation of a labeled tree structure representing a hierarchical categorical clustering algorithm, named CCTree. The elements of the feature-cluster algebra are called terms. We prove that a specific kind of a term, under some conditions, fully abstracts a labeled tree structure. The abstraction methodology maps the original problem to a new representation by removing unwanted details, which makes it simpler to handle. Moreover, we present a set of relations and functions on the algebraic structure to shape the requirements of a term to represent a CCTree structure. The proposed formal approach can be generalized to other categorical clustering (classification) algorithms in which features play key roles in specifying the clusters (classes).
2016
Istituto di informatica e telematica - IIT
Abstraction
Algebraic formalization
Categorical clustering
Clustering algorithm
Formal methods
Semiring
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/318602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact