This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data-limited stocks. It also presents a Bayesian state-space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data-limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock-recruitment model, accounting for reduced recruitment at severely depleted stock sizes.

Estimating fisheries reference points from catch and resilience

Coro G;
2017

Abstract

This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data-limited stocks. It also presents a Bayesian state-space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch-per-unit-of-effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data-limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock-recruitment model, accounting for reduced recruitment at severely depleted stock sizes.
2017
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Bayesian state-space models
Gibbs sampling
Stock assessment
Monte Carlo methods
Markov Chains
File in questo prodotto:
File Dimensione Formato  
prod_359708-doc_127222.pdf

solo utenti autorizzati

Descrizione: Estimating fisheries reference points from catch and resilience
Tipologia: Versione Editoriale (PDF)
Dimensione 677.84 kB
Formato Adobe PDF
677.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_359708-doc_147110.pdf

accesso aperto

Descrizione: Preprint - Estimating fisheries reference points from catch and resilience
Tipologia: Versione Editoriale (PDF)
Dimensione 570.09 kB
Formato Adobe PDF
570.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/318825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 273
  • ???jsp.display-item.citation.isi??? 236
social impact