Self-assembled monolayers (SAMs), combined with the lithography, were employed to fabricate functional surfaces. A new strategy in SAM technology, by using reiterated micro contact printing process, was proposed to produce a multi-level fluorescent TAG (multi-TAG), which consists of two overlapping micrometric patterns, made of a fluorescent oligothiophene SAM bonded with a Si/3-aminopropylthriethoxysilane substrate. The samples were characterized by fluorescence microscopy, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). In particular, the process of chemical interaction occurring during the self-assembling was investigated. The obtained results showed that the SAM process occurred with the amidic bond formation. Moreover, the grazing-angle XPS measurements indicated that the horizontal arrangement of oligothiophene molecules on the substrate surface was preferred.

Surface immobilization of functional molecules by reactive self-assembling

Mezzi A;Kaciulis S;Brucale M;Gentili D;Barbalinardo M;Durso M;Melucci M;Cavallini M
2016

Abstract

Self-assembled monolayers (SAMs), combined with the lithography, were employed to fabricate functional surfaces. A new strategy in SAM technology, by using reiterated micro contact printing process, was proposed to produce a multi-level fluorescent TAG (multi-TAG), which consists of two overlapping micrometric patterns, made of a fluorescent oligothiophene SAM bonded with a Si/3-aminopropylthriethoxysilane substrate. The samples were characterized by fluorescence microscopy, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). In particular, the process of chemical interaction occurring during the self-assembling was investigated. The obtained results showed that the SAM process occurred with the amidic bond formation. Moreover, the grazing-angle XPS measurements indicated that the horizontal arrangement of oligothiophene molecules on the substrate surface was preferred.
2016
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Chemical imaging
Micro-contact printing
RSAM
Surface functionalization
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact