The balance between self-renewal and differentiation of neural progenitor cells (NPCs) dictates neurogenesis and proper brain development. We found that the RNA binding protein Sam68 is strongly expressed in neurogenic areas of the neocortex and supports the self-renewing potential of mouse NPCs. Knockout of Sam68 constricted the pool of proliferating NPCs by accelerating their cell cycle exit and differentiation into post-mitotic neurons. Sam68 function was linked to regulation of Aldh1a3 pre-mRNA 3'-end processing. Binding of Sam68 to an intronic polyadenylation site prevents its recognition and premature transcript termination, favouring expression of a functional enzyme. The lower ALDH1A3 expression and activity in Sam68-/- NPCs results in reduced glycolysis and clonogenicity, thus depleting the embryonic NPC pool and limiting cortical expansion. Our study identifies Sam68 as a key regulator of NPC self-renewal and establishes a novel link between modulation of ALDH1A3 expression and maintenance of high glycolytic metabolism in the developing cortex.

Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing

Stefano Farioli Vecchioli;
2016

Abstract

The balance between self-renewal and differentiation of neural progenitor cells (NPCs) dictates neurogenesis and proper brain development. We found that the RNA binding protein Sam68 is strongly expressed in neurogenic areas of the neocortex and supports the self-renewing potential of mouse NPCs. Knockout of Sam68 constricted the pool of proliferating NPCs by accelerating their cell cycle exit and differentiation into post-mitotic neurons. Sam68 function was linked to regulation of Aldh1a3 pre-mRNA 3'-end processing. Binding of Sam68 to an intronic polyadenylation site prevents its recognition and premature transcript termination, favouring expression of a functional enzyme. The lower ALDH1A3 expression and activity in Sam68-/- NPCs results in reduced glycolysis and clonogenicity, thus depleting the embryonic NPC pool and limiting cortical expansion. Our study identifies Sam68 as a key regulator of NPC self-renewal and establishes a novel link between modulation of ALDH1A3 expression and maintenance of high glycolytic metabolism in the developing cortex.
2016
Istituto di Biochimica e Biologia Cellulare - IBBC
cell biology; mouse; neuroscience
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact