Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium. (C) 2015 Elsevier B.V. All rights reserved.

Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid

Santagata A;
2015

Abstract

Laser ablation of an iron target in water and acetone has been carried out using a frequency doubled Nd:glass laser source (pulse duration of 250 fs and frequency repetition rate of 10 Hz). The observation of the nanostructures formed in the laser irradiated region of the metallic target and fast shadowgraphic analysis of the laser induced cavitation bubble have been performed in order to correlate the size distribution of the obtained nanoparticles to the dynamics of the ablation process. The composition, morphology and oxidation state of the synthesized nanoproducts have been investigated by XPS (X-ray Photoelectron Spectroscopy), TEM (Transmission Electron Microscopy) and microRaman spectroscopy. The experimental data support a relationship between the nanoparticles size distribution and the femtosecond laser ablation mechanism, while the chemical and structural characteristics of the nanoparticles can be tuned by varying the liquid medium. (C) 2015 Elsevier B.V. All rights reserved.
2015
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Laser ablation in liquid
Femtosecond laser source
Cavitation dynamics
Iron nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact