In this work, we investigate the optical and structural properties of the well-known triplet emitter bis(4?,6?-difluorophenylpyridinato)-iridium(III) picolinate (FIrpic), showing that its ability to pack in two different ordered crystal structures promotes attractive photophysical properties that are useful for solid-state lighting applications. This approach allows the detrimental effects of the nonradiative pathways on the luminescence performance in highly concentrated organic active materials to be weakened. The remarkable electro-optical behavior of sky-blue phosphorescent organic light-emitting diodes incorporating crystal domains of FIrpic, dispersed into an appropriate matrix as an active layer, has also been reported as well as the X-ray diffraction, nuclear magnetic resonance, electro-ionization mass spectrometry, and scanning electron microscopy analyses of the crystalline samples. We consider this result as a crucial starting point for further research aimed at the use of a crystal triplet emitter in optoelectronic devices to overcome the long-standing issue of luminescence self-quenching.

Exploiting Photo- and Electroluminescence Properties of FIrpic Organic Crystals

F Di Maria;G Accorsi;M Gazzano;E Fabiano;V Tasco;L Blasi;A Capodilupo;V Maiorano
2016

Abstract

In this work, we investigate the optical and structural properties of the well-known triplet emitter bis(4?,6?-difluorophenylpyridinato)-iridium(III) picolinate (FIrpic), showing that its ability to pack in two different ordered crystal structures promotes attractive photophysical properties that are useful for solid-state lighting applications. This approach allows the detrimental effects of the nonradiative pathways on the luminescence performance in highly concentrated organic active materials to be weakened. The remarkable electro-optical behavior of sky-blue phosphorescent organic light-emitting diodes incorporating crystal domains of FIrpic, dispersed into an appropriate matrix as an active layer, has also been reported as well as the X-ray diffraction, nuclear magnetic resonance, electro-ionization mass spectrometry, and scanning electron microscopy analyses of the crystalline samples. We consider this result as a crucial starting point for further research aimed at the use of a crystal triplet emitter in optoelectronic devices to overcome the long-standing issue of luminescence self-quenching.
2016
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto Nanoscienze - NANO
LIGHT-EMITTING DEVICES; QUANTUM EFFICIENCY; ENERGY-TRANSFER; BLUE; PHOSPHORESCENCE; COMPLEXES; DIODES; HOST
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact