Classical results from spectral theory of stationary linear kinetic equations are applied to efficiently approximate two physically relevant weakly nonlinear kinetic models: a model of chemotaxis involving a biased velocity-redistribution integral term, and a Vlasov-Fokker-Planck (VFP) system. Both are coupled to an attractive elliptic equation producing corresponding mean-field potentials. Spectral decompositions of stationary kinetic distributions are recalled, based on a variation of Case's elementary solutions (for the first model) and on a Sturm-Liouville eigenvalue problem (for the second one). Well-balanced Godunov schemes with strong stability properties are deduced. Moreover, in the stiff hydrodynamical scaling, an hybridized algorithm is set up, for which asymptotic-preserving properties can be established under mild restrictions on the computational grid. Several numerical validations are displayed, including the consistency of the VFP model with Burgers-Hopf dynamics on the velocity field after blowup of the macroscopic density into Dirac masses. (C) 2016 Elsevier Inc. All rights reserved.
Hydrodynamic singular regimes in 1+1 kinetic models and spectral numerical methods
Gosse Laurent;
2017
Abstract
Classical results from spectral theory of stationary linear kinetic equations are applied to efficiently approximate two physically relevant weakly nonlinear kinetic models: a model of chemotaxis involving a biased velocity-redistribution integral term, and a Vlasov-Fokker-Planck (VFP) system. Both are coupled to an attractive elliptic equation producing corresponding mean-field potentials. Spectral decompositions of stationary kinetic distributions are recalled, based on a variation of Case's elementary solutions (for the first model) and on a Sturm-Liouville eigenvalue problem (for the second one). Well-balanced Godunov schemes with strong stability properties are deduced. Moreover, in the stiff hydrodynamical scaling, an hybridized algorithm is set up, for which asymptotic-preserving properties can be established under mild restrictions on the computational grid. Several numerical validations are displayed, including the consistency of the VFP model with Burgers-Hopf dynamics on the velocity field after blowup of the macroscopic density into Dirac masses. (C) 2016 Elsevier Inc. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.