Bioaugmentation-assisted phytoremediation implies the administration of selected plant growth promoting bacteria, which significantly improve plant growth and sequestration of heavy metals. In this work, 184 bacterial strains associated with roots of Pistacia lentiscus were isolated from plants spontaneously growing in the abandoned Sardinian mining areas (SW Sardinia, Italy) and phylogenetically characterised. Twenty-one bacterial isolates were assayed for properties relevant for plant growth promotion and metal tolerance. Five different strains, belonging to the genera Novosphingobium, Variovorax, Streptomyces, Amycolatopsis, Pseudomonas, were selected based on their properties for the greenhouse phytoremediation tests. Among the tested inocula, the strain Variovorax sp. RA128A, able to produce ACC deaminase and siderophore, was able to significantly enhance germination and increase length and weight of shoots and roots. Irrespective of the applied treatment, mastic shrub was able to accumulate Cd, Pb and Zn especially in roots.

Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia

Milia S;Cappai G;Carucci A
2016

Abstract

Bioaugmentation-assisted phytoremediation implies the administration of selected plant growth promoting bacteria, which significantly improve plant growth and sequestration of heavy metals. In this work, 184 bacterial strains associated with roots of Pistacia lentiscus were isolated from plants spontaneously growing in the abandoned Sardinian mining areas (SW Sardinia, Italy) and phylogenetically characterised. Twenty-one bacterial isolates were assayed for properties relevant for plant growth promotion and metal tolerance. Five different strains, belonging to the genera Novosphingobium, Variovorax, Streptomyces, Amycolatopsis, Pseudomonas, were selected based on their properties for the greenhouse phytoremediation tests. Among the tested inocula, the strain Variovorax sp. RA128A, able to produce ACC deaminase and siderophore, was able to significantly enhance germination and increase length and weight of shoots and roots. Irrespective of the applied treatment, mastic shrub was able to accumulate Cd, Pb and Zn especially in roots.
2016
Istituto di Geologia Ambientale e Geoingegneria - IGAG
Bioaugmentation
Heavy metal
Phytoremediation
Pistacia lentiscus
Plant growth promoting bacteria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/319972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact