This paper presents a statistical characterization of the SNR gap between MIMO Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) equalizers, beyond the Rayleigh assumption for the interfering streams amplitude fading. Results are valid for arbitrary transmit SNR values and number of transmit/receive antennas. Specifically, we provide the exact closed-form distribution of the random variable representing the difference between the output SNR on a generic receive filter branch, under MMSE and ZF equalization. Analytical results turn particularly useful for the study of heterogeneous cellular networks.

SNR gap between MIMO linear receivers: Characterization and applications

Chiasserini CF;Nordio A
2016

Abstract

This paper presents a statistical characterization of the SNR gap between MIMO Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) equalizers, beyond the Rayleigh assumption for the interfering streams amplitude fading. Results are valid for arbitrary transmit SNR values and number of transmit/receive antennas. Specifically, we provide the exact closed-form distribution of the random variable representing the difference between the output SNR on a generic receive filter branch, under MMSE and ZF equalization. Analytical results turn particularly useful for the study of heterogeneous cellular networks.
2016
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
MIMO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/320046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact