By means of angle-resolved photoemission spectroscopy (ARPES) measurements, we unveil the electronic band structure of three-dimensional PbBi6Te10 topological insulator. ARPES investigations evidence multiple coexisting Dirac surface states at the zone-center of the reciprocal space, displaying distinct electronic band dispersion, different constant energy contours, and Dirac point energies. We also provide evidence of Rashba-like split states close to the Fermi level, and deeper M- and V-shaped bands coexisting with the topological surface states. The experimental findings are in agreement with scanning tunneling microscopy measurements revealing different surface terminations according to the crystal structure of PbBi6Te10. Our experimental results are supported by density functional theory calculations predicting multiple topological surface states according to different surface cleavage planes.

Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi6Te10

Fujii J;Mahatha SK;Vobornik I;
2016

Abstract

By means of angle-resolved photoemission spectroscopy (ARPES) measurements, we unveil the electronic band structure of three-dimensional PbBi6Te10 topological insulator. ARPES investigations evidence multiple coexisting Dirac surface states at the zone-center of the reciprocal space, displaying distinct electronic band dispersion, different constant energy contours, and Dirac point energies. We also provide evidence of Rashba-like split states close to the Fermi level, and deeper M- and V-shaped bands coexisting with the topological surface states. The experimental findings are in agreement with scanning tunneling microscopy measurements revealing different surface terminations according to the crystal structure of PbBi6Te10. Our experimental results are supported by density functional theory calculations predicting multiple topological surface states according to different surface cleavage planes.
2016
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
ARPES
DFT
Dirac surface states
STM
topological insulator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/320600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? ND
social impact