Experiment and theory evidence a new pathway for correlated two-electron release from many-body compounds following collective excitation by a single photon. Using nonequilibrium Green's function approach we trace plasmon oscillations as the key ingredient of the effective electron-electron interaction that governs the correlated pair emission in a dynamic many-body environment. Results from a full ab initio implementation for C60 fullerene are in line with experimental observations. The findings endorse the correlated two-electron photoemission as a powerful tool to access electronic correlation in complex systems.

Electron pair escape from fullerene cage via collective modes

Bolognesi P;Avaldi L;
2016

Abstract

Experiment and theory evidence a new pathway for correlated two-electron release from many-body compounds following collective excitation by a single photon. Using nonequilibrium Green's function approach we trace plasmon oscillations as the key ingredient of the effective electron-electron interaction that governs the correlated pair emission in a dynamic many-body environment. Results from a full ab initio implementation for C60 fullerene are in line with experimental observations. The findings endorse the correlated two-electron photoemission as a powerful tool to access electronic correlation in complex systems.
2016
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
fullerene cage
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact