Halloysite Clay nanotubes (HNTs) are naturally occurring nanotubes composed of double layered aluminosilicate minerals with a hollow tubular structure in the nanometer range. In recent years, HNTs have attracted specific research attention as a possible new material for various biological applications, including drug and gene delivery vehicles, ultrasound contrast agents, cancer and stem cells isolation. Therefore, assessment of HNT biocompatibility has gained importance to demonstrate its suitability for clinical purposes. In this study, HNTs were densely coated with poly(ethylene glycol) (PEG) and MTT measurements were performed on MCF-7 (breast cancer) and HeLa (cervical cancer) cells to quantify the biocompatibility of PEG-coated HNTs as a function of nanotube dosage and incubation time. PEG-coated HNTs resulted fully biocompatible for both cell lines at concentrations up to 0.1 mg/mL (>70% of cells survived after 72-h incubation), making them suitable candidates for nanomedicine applications at moderate levels of exposure.

Cytotoxicity Measurements of Halloysite Nanotubes for Nanomedicine Applications

Conversano F;Sbenaglia E A;Casciaro S;Leporatti S;
2014

Abstract

Halloysite Clay nanotubes (HNTs) are naturally occurring nanotubes composed of double layered aluminosilicate minerals with a hollow tubular structure in the nanometer range. In recent years, HNTs have attracted specific research attention as a possible new material for various biological applications, including drug and gene delivery vehicles, ultrasound contrast agents, cancer and stem cells isolation. Therefore, assessment of HNT biocompatibility has gained importance to demonstrate its suitability for clinical purposes. In this study, HNTs were densely coated with poly(ethylene glycol) (PEG) and MTT measurements were performed on MCF-7 (breast cancer) and HeLa (cervical cancer) cells to quantify the biocompatibility of PEG-coated HNTs as a function of nanotube dosage and incubation time. PEG-coated HNTs resulted fully biocompatible for both cell lines at concentrations up to 0.1 mg/mL (>70% of cells survived after 72-h incubation), making them suitable candidates for nanomedicine applications at moderate levels of exposure.
2014
Istituto di Fisiologia Clinica - IFC
Istituto di Nanotecnologia - NANOTEC
978-1-4799-2921-4
halloysite nanotubes
biocompatibility
biomedical materials
nanobiotechnology
File in questo prodotto:
File Dimensione Formato  
prod_325423-doc_98804.pdf

solo utenti autorizzati

Descrizione: Proceeding pubblicato
Dimensione 914.99 kB
Formato Adobe PDF
914.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact