A C60-ionic liquid hybrid has been covalently linked to three different solid supports, namely amorphous silica, SBA-15 and Fe2O3@SiO2, and the resulting materials have been employed as covalently supported ionic liquid phases (cSILP) in order to immobilize and stabilize palladium nanoparticles (PdNPs). These novel hybrid materials are based on a sort of "matryoshka" system (PdNPs@imidazolium-salt@C60@support) in which the imidazolium-based moieties have not been directly linked to the surface of the support, but they are present in an octopus-like spatial arrangement on the uniformly surface-distributed fullerenes. These materials have been fully characterized and successfully employed as catalysts in C-C bond forming reactions showing, in the case of Suzuki cross-coupling, an outstanding catalytic activity both under classical heating and by irradiating with microwaves. Turn-over frequencies (TOFs) of up to 3 640 000 h-1 have been achieved and the silica-based catalyst showed full recyclability even after 10 cycles

Supported C60-IL-PdNPs as extremely active nanocatalysts for C-C cross-coupling reactions

Calabrese C;La Parola V;Liotta LF;
2016

Abstract

A C60-ionic liquid hybrid has been covalently linked to three different solid supports, namely amorphous silica, SBA-15 and Fe2O3@SiO2, and the resulting materials have been employed as covalently supported ionic liquid phases (cSILP) in order to immobilize and stabilize palladium nanoparticles (PdNPs). These novel hybrid materials are based on a sort of "matryoshka" system (PdNPs@imidazolium-salt@C60@support) in which the imidazolium-based moieties have not been directly linked to the surface of the support, but they are present in an octopus-like spatial arrangement on the uniformly surface-distributed fullerenes. These materials have been fully characterized and successfully employed as catalysts in C-C bond forming reactions showing, in the case of Suzuki cross-coupling, an outstanding catalytic activity both under classical heating and by irradiating with microwaves. Turn-over frequencies (TOFs) of up to 3 640 000 h-1 have been achieved and the silica-based catalyst showed full recyclability even after 10 cycles
2016
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
cross coupling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact