The main ANN based retrieval algorithms developed at the Institute of Applied Physics (IFAC) are reviewed here. These algorithms aim at retrieving the main hydrological parameters, namely the soil moisture content (SMC), the plant water content (PWC) of agricultural vegetation, the woody volume of forests (WV) and the snow depth (SD) or snow water equivalent (SWE), from data collected by active (SAR/scatterometers) and passive (radiometers) microwave sensors operating from space. Taking advantage of the fast computation, ANN are able to generate output maps of the target parameter at both local and global scales, with a resolution varying from hundreds of meters to tens of kilometres, depending on the considered sensor. A peculiar strategy adopted for the training, which has been obtained by combining satellite measurements with data simulated by electromagnetic models (based on the radiative transfer theory, RTT), made these algorithms robust and site-independent. The obtained results demonstrated that ANN are a powerful tool for estimating the hydrological parameters at different spatial scales, provided they have been trained with consistent datasets, made up by both experimental and theoretical data.

Neural Networks Applications for the Remote Sensing of Hydrological parameters

2016

Abstract

The main ANN based retrieval algorithms developed at the Institute of Applied Physics (IFAC) are reviewed here. These algorithms aim at retrieving the main hydrological parameters, namely the soil moisture content (SMC), the plant water content (PWC) of agricultural vegetation, the woody volume of forests (WV) and the snow depth (SD) or snow water equivalent (SWE), from data collected by active (SAR/scatterometers) and passive (radiometers) microwave sensors operating from space. Taking advantage of the fast computation, ANN are able to generate output maps of the target parameter at both local and global scales, with a resolution varying from hundreds of meters to tens of kilometres, depending on the considered sensor. A peculiar strategy adopted for the training, which has been obtained by combining satellite measurements with data simulated by electromagnetic models (based on the radiative transfer theory, RTT), made these algorithms robust and site-independent. The obtained results demonstrated that ANN are a powerful tool for estimating the hydrological parameters at different spatial scales, provided they have been trained with consistent datasets, made up by both experimental and theoretical data.
2016
Istituto di Fisica Applicata - IFAC
978-953-51-2704-8
soil moisture content
vegetation water content
vegetation water content
snow water equivalent
woody volume
snow water equivalent
snow water equivalent
woody volume
snow water equivalent
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact