Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors

Comparative analysis of recent satellite missions for Multi-temporal SAR interferometry

Fabio Bovenga;Alberto Refice;Antonella Belmonte;Guido Pasquariello
2016

Abstract

Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors
2016
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
SAR
Multi-temporal / Multi-sensor SAR Interferometry
Ground displacement monitoring
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact