Graphene and its related materials have attracted much interest in sensing applications because of their optimized ratio between active surface and bulk volume. In particular, several forms of oxidized graphene have been studied to optimize the sensing efficiency, sometimes moving away from practical solutions to boost performance. In this paper, we propose a practical, high-sensitivity, and easy to fabricate gas sensor based on high quality graphene oxide (GO), and we give the rationale to the high performance of the device. The device is fabricated by drop-casting water-dispersed single-layer GO flakes on standard 30 mu m spaced interdigitated Pt electrodes. The exceptional size of the GO flakes (27 mu m mean size and similar to 500 mu m maximum size) allows single GO flake to bridge electrodes. A typical p-type response is observed by testing the device in both reducing and oxidizing environments. The specific response to NO2 is studied by varying the operating temperature and the gas concentration. Sensing activity is demonstrated to be mainly mediated by the oxygen functional groups. A 20 ppb detection limit is measured. Besides illustrating a simple and efficient approach to gas sensing, this work is an example of the versatility of graphene oxide, accomplishing tasks that are complementary to graphene. adjacent

Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing

Treossi Emanuele;Palermo Vincenzo;Ottaviano Luca
2013

Abstract

Graphene and its related materials have attracted much interest in sensing applications because of their optimized ratio between active surface and bulk volume. In particular, several forms of oxidized graphene have been studied to optimize the sensing efficiency, sometimes moving away from practical solutions to boost performance. In this paper, we propose a practical, high-sensitivity, and easy to fabricate gas sensor based on high quality graphene oxide (GO), and we give the rationale to the high performance of the device. The device is fabricated by drop-casting water-dispersed single-layer GO flakes on standard 30 mu m spaced interdigitated Pt electrodes. The exceptional size of the GO flakes (27 mu m mean size and similar to 500 mu m maximum size) allows single GO flake to bridge electrodes. A typical p-type response is observed by testing the device in both reducing and oxidizing environments. The specific response to NO2 is studied by varying the operating temperature and the gas concentration. Sensing activity is demonstrated to be mainly mediated by the oxygen functional groups. A 20 ppb detection limit is measured. Besides illustrating a simple and efficient approach to gas sensing, this work is an example of the versatility of graphene oxide, accomplishing tasks that are complementary to graphene. adjacent
2013
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Detection limits
Sensing applications
Graphene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/321953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 195
  • ???jsp.display-item.citation.isi??? ND
social impact