We measure the diurnal dependence of the operating characteristics of tetraphenyldibenzoperiflanthene (DBP):C70 planar-mixed heterojunction small-molecule organic photovoltaic (OPV) cells with 2,2',2''-(1,3,5-benzenitryl tris-[1-phenyl-1H-benzimidazole] (TPBi):C70 electron-filtering cathode buffer layers. Over the course of a day, efficiency gradually increases as a result of a concomitant increase in short-circuit current, while the fill factor and open-circuit voltage remain constant. The results are analyzed on the basis of independent measurements of temperature- and intensity-dependent OPV performance. The power conversion efficiency is maximized slightly below 1 sun intensity and at 40°C, which is beneficial for practical outdoor operation. We attribute the increased short circuit current with temperature to broadening of the absorption spectrum due to population of phonon states along with increased charge mobility, which also results in an increase in fill factor.

Outdoor operation of small-molecule organic photovoltaics

Gloria Zanotti;
2017

Abstract

We measure the diurnal dependence of the operating characteristics of tetraphenyldibenzoperiflanthene (DBP):C70 planar-mixed heterojunction small-molecule organic photovoltaic (OPV) cells with 2,2',2''-(1,3,5-benzenitryl tris-[1-phenyl-1H-benzimidazole] (TPBi):C70 electron-filtering cathode buffer layers. Over the course of a day, efficiency gradually increases as a result of a concomitant increase in short-circuit current, while the fill factor and open-circuit voltage remain constant. The results are analyzed on the basis of independent measurements of temperature- and intensity-dependent OPV performance. The power conversion efficiency is maximized slightly below 1 sun intensity and at 40°C, which is beneficial for practical outdoor operation. We attribute the increased short circuit current with temperature to broadening of the absorption spectrum due to population of phonon states along with increased charge mobility, which also results in an increase in fill factor.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
solar cell
phonon
temperature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact