Partially degalactosylated xyloglucan from tamarind seeds (Deg-XG) is a very appealing biopolymer for the production of in situ gelling systems at physiological temperature. In this work, we observe that the morphology of hydrogels evolves towards high degrees of structural organization with time, yielding to dense stacks of thin membranes within 24 h of incubation at 37 °C. We also explore the possibility offered by gamma irradiation of controlling the time scale of this phenomenon, the final morphology and mechanical properties of the system. Structural and molecular modifications of Deg-XG with dose are investigated by FTIR, dynamic light scattering (DLS) and rotational viscosimetry. The impact on gelation ability and gel strength is studied by rheological analysis. The morphology evolution is investigated by SEM analysis, and absence of cytotoxicity verified by MTS assay and optical microscopy of neuroblastoma cells.

Temporal control of xyloglucan self-assembly into layered structures by radiation-induced degradation

Mangione MR;Picone P;Bulone D;
2016

Abstract

Partially degalactosylated xyloglucan from tamarind seeds (Deg-XG) is a very appealing biopolymer for the production of in situ gelling systems at physiological temperature. In this work, we observe that the morphology of hydrogels evolves towards high degrees of structural organization with time, yielding to dense stacks of thin membranes within 24 h of incubation at 37 °C. We also explore the possibility offered by gamma irradiation of controlling the time scale of this phenomenon, the final morphology and mechanical properties of the system. Structural and molecular modifications of Deg-XG with dose are investigated by FTIR, dynamic light scattering (DLS) and rotational viscosimetry. The impact on gelation ability and gel strength is studied by rheological analysis. The morphology evolution is investigated by SEM analysis, and absence of cytotoxicity verified by MTS assay and optical microscopy of neuroblastoma cells.
2016
Istituto di Biofisica - IBF
Istituto di biomedicina e di immunologia molecolare - IBIM - Sede Palermo
High energy-irradiation
Hydrogels
Self-assembly
Thermoresponsive biopolymer
Xyloglucan
File in questo prodotto:
File Dimensione Formato  
prod_363394-doc_119790.pdf

solo utenti autorizzati

Descrizione: Temporal control of xyloglucan self-assembly into layered structures by radiation-induced degradation
Tipologia: Versione Editoriale (PDF)
Dimensione 3.51 MB
Formato Adobe PDF
3.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact