We discuss the use of rotational Raman scattering as a possible technique for the calibration of polarization based plasma diagnostics such as the polarimetric Thomson scattering (TS) systems proposed for the measurement of electron density ne and temperature T-e in very hot fusion plasmas. First by using the Stokes vector formalism, we calculate the Mueller matrix of rotational Raman scattering from a diatomic gas (such as H-2, D-2 and N-2) for a generic scattering angle and then we use it to describe in detail the polarization characteristics of the Raman radiation available in the typical conditions of a TS system in a fusion plasma. Then we consider the various experimental set-ups proposed for polarimetric TS and show that rotational Raman scattering can generate radiation with known intensity and polarization states that, although not equal to those of the TS radiation, are suitable for the calibration of polarimetric TS diagnostics. Finally we point out that in fusion experiments Raman polarimetry may be of interest also for the calibration of other polarization-based measurement systems, such as the motional Stark effect (MSE) diagnostics.

Rotational Raman scattering as a source of polarized radiation for the calibration of polarization-based Thomson scattering

Pasqualotto Roberto
2015

Abstract

We discuss the use of rotational Raman scattering as a possible technique for the calibration of polarization based plasma diagnostics such as the polarimetric Thomson scattering (TS) systems proposed for the measurement of electron density ne and temperature T-e in very hot fusion plasmas. First by using the Stokes vector formalism, we calculate the Mueller matrix of rotational Raman scattering from a diatomic gas (such as H-2, D-2 and N-2) for a generic scattering angle and then we use it to describe in detail the polarization characteristics of the Raman radiation available in the typical conditions of a TS system in a fusion plasma. Then we consider the various experimental set-ups proposed for polarimetric TS and show that rotational Raman scattering can generate radiation with known intensity and polarization states that, although not equal to those of the TS radiation, are suitable for the calibration of polarimetric TS diagnostics. Finally we point out that in fusion experiments Raman polarimetry may be of interest also for the calibration of other polarization-based measurement systems, such as the motional Stark effect (MSE) diagnostics.
2015
Istituto gas ionizzati - IGI - Sede Padova
ITER
LIDAR Thomson scattering
Mueller matrix
plasma diagnostics
Raman polarimetry
rotational Raman scattering
Thomson scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact