In this paper multi-sensor airborne remote sensing has been applied to the Arpi archaeological area of southern Italy to assess its suitability for detecting and locating subsurface archaeological structures and to delineate subsurface remains beyond the current limits of ground geophysical data. To this aim, the capability of CASI and ATM reflectances in the VIS-NIR spectral range and the ATM apparent thermal inertia for subsurface archaeological prospection have been assessed at different sites of the Arpi archaeological area. First, linear spectral mixture analysis has been applied to CASI and ATM images to retrieve the dominant land cover for the selected subsurface structures, and then, the spectral bands most effective for the archaeological buried structure detection as a function of the land cover characteristics have been evaluated. The results reveal that multi/hyperspectral airborne remote sensing data can represent an effective and rapid tool to detect subsurface structures within different land cover contexts. Therefore, the proposed methodology can be used to perform a preliminary analysis of those areas where large cultural heritage assets occur by prioritizing and localizing the sites where to apply archaeological prospection. © 2010 Nanjing Geophysical Research Institute.

Suitability of CASI and ATM airborne remote sensing data for archaeological subsurface structure detection under different land cover: The Arpi case study (Italy)

Pascucci S;Palombo A;
2010

Abstract

In this paper multi-sensor airborne remote sensing has been applied to the Arpi archaeological area of southern Italy to assess its suitability for detecting and locating subsurface archaeological structures and to delineate subsurface remains beyond the current limits of ground geophysical data. To this aim, the capability of CASI and ATM reflectances in the VIS-NIR spectral range and the ATM apparent thermal inertia for subsurface archaeological prospection have been assessed at different sites of the Arpi archaeological area. First, linear spectral mixture analysis has been applied to CASI and ATM images to retrieve the dominant land cover for the selected subsurface structures, and then, the spectral bands most effective for the archaeological buried structure detection as a function of the land cover characteristics have been evaluated. The results reveal that multi/hyperspectral airborne remote sensing data can represent an effective and rapid tool to detect subsurface structures within different land cover contexts. Therefore, the proposed methodology can be used to perform a preliminary analysis of those areas where large cultural heritage assets occur by prioritizing and localizing the sites where to apply archaeological prospection. © 2010 Nanjing Geophysical Research Institute.
2010
Airborne remote sensing
Anomalies
Hyperspectral imagery
Photo-interpretation
Subsurface archaeological structures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact