Objectives Identifying the predictive factors of Sustained Virological Response (SVR) represents an important challenge in new interferon-based DAA therapies. Here, we analyzed the kinetics of antiviral response associated with a triple drug regimen, and the association between negative residual viral load at different time points during treatment. Methods Twenty-three HCV genotype 1 (GT 1a n = 11; GT1b n = 12) infected patients were included in the study. Linear Discriminant Analysis (LDA) was used to establish possible association between HCV RNA values at days 1 and 4 from start of therapy and SVR. Principal compo- nent analysis (PCA) was applied to analyze the correlation between HCV RNA slope and SVR. A ultrasensitive (US) method was established to measure the residual HCV viral load in those samples which resulted "detected <12IU/ml" or undetectable with ABBOTT stan- dard assay, and was retrospectively used on samples collected at different time points to establish its predictive power for SVR. Results According to LDA, there was no association between SVR and viral kinetics neither at time points earlier than 1 week (days 1 and 4) after therapy initiation nor later. The slopes were not relevant for classifying patients as SVR or no-SVR. No significant differences were observed in the median HCV RNA values at T0 among SVR and no-SVR patients. HCV RNA values with US protocol (LOD 1.2 IU/ml) after 1 month of therapy were considered; the area under the ROC curve was 0.70. Overall, PPV and NPV of undetectable HCV RNA with the US method for SVR was 100% and 46.7%, respectively; sensitivity and specificity were 38.4% and 100% respectively. Conclusion HCV RNA "not detected" by the US method after 1 month of treatment is predictive of SVR in first generation Protease inhibitor (PI)-based triple therapy. The US method could have clinical utility for advanced monitoring of virological response in new interferon based DAA combination regimens.

Ultrasensitive HCV RNA Quantification in Antiviral Triple Therapy: New Insight on Viral Clearance Dynamics and Treatment Outcome Predictors.

Castiglione Filippo;Paci Paola
2016

Abstract

Objectives Identifying the predictive factors of Sustained Virological Response (SVR) represents an important challenge in new interferon-based DAA therapies. Here, we analyzed the kinetics of antiviral response associated with a triple drug regimen, and the association between negative residual viral load at different time points during treatment. Methods Twenty-three HCV genotype 1 (GT 1a n = 11; GT1b n = 12) infected patients were included in the study. Linear Discriminant Analysis (LDA) was used to establish possible association between HCV RNA values at days 1 and 4 from start of therapy and SVR. Principal compo- nent analysis (PCA) was applied to analyze the correlation between HCV RNA slope and SVR. A ultrasensitive (US) method was established to measure the residual HCV viral load in those samples which resulted "detected <12IU/ml" or undetectable with ABBOTT stan- dard assay, and was retrospectively used on samples collected at different time points to establish its predictive power for SVR. Results According to LDA, there was no association between SVR and viral kinetics neither at time points earlier than 1 week (days 1 and 4) after therapy initiation nor later. The slopes were not relevant for classifying patients as SVR or no-SVR. No significant differences were observed in the median HCV RNA values at T0 among SVR and no-SVR patients. HCV RNA values with US protocol (LOD 1.2 IU/ml) after 1 month of therapy were considered; the area under the ROC curve was 0.70. Overall, PPV and NPV of undetectable HCV RNA with the US method for SVR was 100% and 46.7%, respectively; sensitivity and specificity were 38.4% and 100% respectively. Conclusion HCV RNA "not detected" by the US method after 1 month of treatment is predictive of SVR in first generation Protease inhibitor (PI)-based triple therapy. The US method could have clinical utility for advanced monitoring of virological response in new interferon based DAA combination regimens.
2016
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Istituto Applicazioni del Calcolo ''Mauro Picone''
COMPUTATIONAL AND SYSTEMS BIOLOGY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact