A coupled aerosol-atmosphere-ocean-sea ice climate model is used to explore the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. Results show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface. In the same period, enhanced surface cooling may also be amplified through solar dimming by more cloudiness and aerosol loading, via increased dust transported by low-level westerly flow. The surface cooling causes subsequent reduction in monsoon rainfall in July-August over India. The time-lagged nature of the reasonably realistic response of the model to aerosol forcing suggests that absorbing aerosols, besides their potential key roles in impacting monsoon water cycle and climate, may influence the seasonal variability of the Indian summer monsoon.

Indian monsoon and the elevated-heat-pump mechanism in a coupled aerosol-climate model

Cagnazzo Chiara;von Hardenberg Jost;Fierli Federico;Cherchi Annalisa
2015

Abstract

A coupled aerosol-atmosphere-ocean-sea ice climate model is used to explore the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. Results show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface. In the same period, enhanced surface cooling may also be amplified through solar dimming by more cloudiness and aerosol loading, via increased dust transported by low-level westerly flow. The surface cooling causes subsequent reduction in monsoon rainfall in July-August over India. The time-lagged nature of the reasonably realistic response of the model to aerosol forcing suggests that absorbing aerosols, besides their potential key roles in impacting monsoon water cycle and climate, may influence the seasonal variability of the Indian summer monsoon.
2015
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
aerosol
monsoon
feedbacks
elevated-heat-pump
climate model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact