Persistent opening of the mitochondrial permeability transition pore (PTP), an inner membrane channel, leads to mitochondrial dysfunction and renders the PTP a therapeutic target for a host of life-threatening diseases. Herein, we report our effort toward identifying small-molecule inhibitors of this target through structure-activity relationship optimization studies, which led to the identification of several potent analogues around the N-phenylbenzamide compound series identified by high-throughput screening. In particular, compound 4 (3-(benzyloxy)-5-chloro-N-(4-(piperidin-1-ylmethyl)phenyl)benzamide) displayed noteworthy inhibitory activity in the mitochondrial swelling assay (EC50=280 nm), poor-to-very-good physicochemical as well as in vitro pharmacokinetic properties, and conferred very high calcium retention capacity to mitochondria. From the data, we believe compound 4 in this series represents a promising lead for the development of PTP inhibitors of pharmacological relevance

N-Phenylbenzamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore

Bernardi P
2016

Abstract

Persistent opening of the mitochondrial permeability transition pore (PTP), an inner membrane channel, leads to mitochondrial dysfunction and renders the PTP a therapeutic target for a host of life-threatening diseases. Herein, we report our effort toward identifying small-molecule inhibitors of this target through structure-activity relationship optimization studies, which led to the identification of several potent analogues around the N-phenylbenzamide compound series identified by high-throughput screening. In particular, compound 4 (3-(benzyloxy)-5-chloro-N-(4-(piperidin-1-ylmethyl)phenyl)benzamide) displayed noteworthy inhibitory activity in the mitochondrial swelling assay (EC50=280 nm), poor-to-very-good physicochemical as well as in vitro pharmacokinetic properties, and conferred very high calcium retention capacity to mitochondria. From the data, we believe compound 4 in this series represents a promising lead for the development of PTP inhibitors of pharmacological relevance
2016
Istituto di Neuroscienze - IN -
calcium retention capacity
mitochondria
mitochondrial swelling
N-phenylbenzamides
permeability transition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/322827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact